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J.  Phys. A: Math. Gen. 15 (1982) 3869-3875. Printed in Great Britain 

Periodic structures in a two-dimensional lattice 

G Behnke'r and H Biittner$ 
t Max-Planck-Institut fur Festkorperforschung, D-7000 Stuttgart 80, FRG 
t Physikalisches Institut, Universitat Bayreuth, D-8580 Bayreuth, FRG 

Received 7 June 1982 

Abstract. A two-dimensional lattice with harmonic interactions to nearest and next-nearest 
neighbours is studied in detail. The local anharmonic ion-electron interaction is described 
by a double-quadratic potential. The ground state is a periodic structure with different 
periods for variable parameters. In a simple mean-field approximation it is found that 
with changing temperature, transitions between different periodic structures are possible. 

1. Introduction 

Recently the relation of nonlinear lattices and structural phase transitions has found 
a growing interest in the literature (Bilz et a1 1980, 1982, Buttner and Bilz 1981, 
Buttner 1982, Janssen and Tjon 1981a, b, Axel and Aubry 1981). Since most of the 
models studied so far have been one-dimensional lattices (with the exception of Bilz 
et a1 (1982)), it is of great interest to extend the discussion to two-dimensional systems. 
In this paper a two-dimensional quadratic lattice with polarisable ions is studied in 
detail. The polarisability is described by a local anharmonic electron-ion coupling. 
Besides this local anharmonicity there are harmonic nearest and next-nearest neigh- 
bour couplings. As in Axel and Aubry (1981) the double-quadratic potential is used 
to describe anharmonic effects. This double-quadratic potential has been discussed 
extensively in the literature (see e.g. Trullinger and de Leonardis 1979, Trullinger 
1980, Horovitz et a1 1977, Behnke and Biittner 1981, Peyrard 1981). The main 
advantage of this potential is that many of the mathematical problems can be solved 
analytically. The main difference from the d4 potential is the behaviour for large 
displacements. 

In the present work we will study commensurable static solutions in a quadratic 
lattice, and compare them with the one-dimensional results of Axel and Aubry (1981). 
Furthermore, the stability of the various periodic states is discussed in detail. A brief 
discussion of a mean-field approximation for finite temperatures is included. 

2. A two-dimensional shell model 

The elements of the lattice are polarisable ions with an ionic core and an electronic 
shell. The interaction between the core and the shell is described by a double-quadratic 
potential. The physical ideas behind the shell model are discussed extensively in the 
literature (see e.g. Buttner and Bilz 1981, Bilz et af 1982). The coupling to nearest 

0305-4470/82/123869 + 07$02.00 @ 1982 The Institute of Physics 3869 
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and next-nearest neighbours is described by harmonic forces. The force constants are 
denoted by f' and k .  The coupling is the same in the x and y direction. Further, we 
use a diagonal coupling described by f3. In addition to these ionic couplings we have 
a shell-shell interaction denoted by fl .  The details of our model can be seen in figure 
1. As we can see from Axel and Aubry ( 1 9 8 1 ) ,  we need a competing interaction to 
nearest and next-nearest neighbours in order to get different ground states for the 
one-dimensional model. It will be shown that the same is true for our two-dimensional 
system. 

I n n + l  n + 2  

m 

m+ 1 

Figure 1. Part of the two-dimensional, quadratic lattice with nearest neighbour harmonic 
force constants f', next-nearest neighbour constants K in x and y direction and diagonal 
harmonic force constants f3  between the ion cores; f l  is the coupling between the electron 
shells; the ion core electron-shell coupling is described by a harmonic force constant g2 
and an anharmonic part g4. 

The displacements of the ions are denoted by U"' and those of the electronic 
shells by U mn, with components U y", U 7" and U Y'", U?". The corresponding Hamiltonian 
for this lattice is given by 

E l = $  1 [ M ( u " " ) 2 + M , ( d m n ) 2 ] + ~  [ [ f l (u;t"-u~n-')Z+fl(u2"" - u 7 - 1 " ) z  

) I 2  + k ( u ? "  - u : - ~  " ) ' + f 3 / 2 ( [ ( U 7 " - ~ ; f - ~  ) - - U ; - l n - l  

- U ; l + l " - l  )+(U 7" - u?+1n-1)]2} + g*(w r")2 + g2(w7")2 

+g4[(~W;tn~ - 1 ~ -  ii+g4[(iW2mni - 1~ - 1x1. 

m, n m,n 

+f'(u';" - ;In-1)2 +f'(uT" - U7-1n)2  + k ( u r "  - ;tn-2)2 

(1) 
It should be noted here that the double-quadratic potential can be interpreted as an 
approximation to the 44 model (Axel and Aubry 1981) for not too large displacements, 
since we expect from a physical point of view a strong anharmonicity for large 
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displacements. In our analytical treatment we prefer the approximate potential, 
although it may have some disadvantages in the description of real physical systems. 

3. The static solutions 

We are firstly interested in the possible ground states for zero temperature. They are 
complicated functions of the various force constants. They are solutions of the 
following four static coupled nonlinear difference equations: 

M,U;I" = 0 = - g 2 z  yfl + f l ( U  yn+l  + u ; tn- l  - 2u y n ) ,  

m - l n + l  + U ~ + l n - l  m + l n + l  + U y - l n - l  -4u2"" n + l  
+ f 3 / 2 ( u  2 + U 2  

+ U ? + '  n-l -U1 1, (4) 

(3) 
m + 2 n  + U y - 2 n  - 2 U ~ n )  M u y  = o =  g 2 z y  +f ' (uy+ '"  + U T - 1 n  - 2 u T " ) + k ( u 2  

m + l n + l  - u y - l n - l  

where the anharmonicities are contained in the abbreviation 

(6) 
mn 

g 2 z  Y = gw - g4 sgn(w 7") 
with g = g2 + g4, and with the difference coordinate w 7" = U 7' - U Y", i = 1, 2. 

The number of solutions to these equations is quite large and we discuss only 
commensurable states. Even then there are five different kinds of solutions. 

(i) Both displacements U and U are only functions of n. They are the same for all 
chains. 

(ii) The displacements depend only on m and they are the same for all rows n. 
These solutions are degenerate in energy to those from (i). 

(iii, iv) The x components are functions of n (or m )  and the y components are 
functions of m (or n) .  

(v) The displacements are functions of (n + m ) .  This is the quasi-one-dimensional 
case. 
Explicit calculations show that for the different cases there exist many periodic 
structures of which some are given in table 1. The functional dependence on the 
parameters is always the same if one uses an effective ratio 

(7) 
which is different for the cases (i)-(v). The corresponding effective spring constants 
F, are also given in table 1. 

The important point is that these periodic structures are not solutions for arbitrary 
a,. While for positive a, the structures always exist, we have certain restrictions for 
negative a,. It turns out that the symmetric structures have a lower energy than the 
asymmetric ones. These symmetric solutions can be written as 

WY =*awOsgn[cos(aqp +9)]*pwocos(aqp +9), i = 1 , 2 ,  (8) 

a, = g/f" = g ( l / f 1 +  l / F " ) ,  v = (i), (ii), . . . , (v), 
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Table 1. Periodic structures of equations (2 ) - (5 ) .  The force constants F,, used in equation 
(7), are given explicitly for the solutions of the cases (i)-(v). 

Period Structure F,,); F,,,,; F(,,,) F(,,) F,", Restrictions 

1 

2 
3 
3 
4 
4 
4 
6 
6 
6 
6 

- ttt 
tl f ' + f 3  

x t l  
tll f ' + f 3 + k  
x t x l  
t tll  f ' + f 3 + 2 k  
tu1 

f 3  f' a ,  < -4 

f 3 + k  f ' + k  a ,  < -3 
a , < - 2  

f 3 + 2 k  f ' + 2 k  a " i - 2  
a , < - 4  
a v < - l  

with p = n,  m or ( m  + n ); w o  = g4/g, where the phases q5 depend on the period q. The 
amplitudes CY and /3 depend only on a,. In table 2 we give these parameters for the 
first symmetric periodic structures. The displacements umn and umn are given by 
similar expressions. 

Table 2. Symmetric periodic solutions, given by equation (8). 

Structure aq 9 LY P 

ttf 21r 
tl 77 

x t x l  n/ 2 
ttll X I  2 
x t t x l l  n13 
tttlll TI 3 

x t l  2 a / 3  
tll 2 n / 3  

0 
0 
- n / 2  
- 2 ~ 1 3  

- 3 ~ 1 4  
-7712 
- 2 ~ 1 3  

-77 

0 
0 
0 
1 
0 
0 
0 
a,/ ( 4  + a,)  

The results for the energy calculations can .be summarised as follows. For positive 
coupling constants f', f t ,  k and f3 the solution with period 1 (the ferroelectric state) 
has always the lowest energy. For negative a, we find a variety of possible ground 
states depending on the coupling constants. The energy for the cases (i) and (ii) is 
always higher than for (iii, iv) and (v). For these latter cases we give the results in 
figure 2, where the energy per particle is plotted in units of the ferroelectric ground 
state energy as a function of a,. 

For a ,  < -4 the state of period 2 is the ground state. For a, between -3 and -4 
the state of period 3 is the lowest in energy, and so on (see figure 2). Having calculated 
these different states and their energy, it is important to know whether these states 
are really stable with respect to small time-dependent perturbations. We therefore 
consider small time-dependent disturbances E mn ( t )  to the static solutions and linearise 
the equations of motion with respect to these perturbations. With the ansatz E mn ( 1 )  = 
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Figure 2. The energy per particle in units of the ferroelectric energy as a function of a, 
for negative force constants for the static solutions of periods 1 to 6.  

E:” eiw‘ one determines the eigenvalue spectrum. The resulting spectrum of these 
linear equations has to be positive for arbitrary wavenumbers in order to have stable 
solutions. 

The ferroelectric state is found to be stable for positive coupling constants. 
The period-2 solution has the spectrum 

and as a result we find that for a ,  < -4 the solution is stable. In figure 3 we have 
plotted the dispersion relation for two values of the parameter a,. The dispersion of 
the period-3 solution cannot be given analytically. Numerical studies, however, show 
that for -3 >a,  > -4 the states are stable if f l >  0 and f ’ / k  is of the same order as 
g/fl. In figure 4 we give an example for a special set of parameters. 

4. Discussion 

The periodic structures studied so far describe a large number of possible ground 
states (for appropriate parameters) at the temperature T = 0. The solutions have a 
similar form to those of the one-dimensional model of Axel and Aubry (1981) 
(although they seem to have a misprint in their formula (40), where a phase is missing). 
In contrast to their method, however, our stability analysis tests the dynamic behaviour 
of the lattice under small perturbations. There are also incommensurable phases, but 
we are here concerned only with the periodic structures. 
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Figure 3. Frequency Mu2 of the eigenmodes for the perturbation of the period-2 solution 
as a function of the wavenumber q for two parameter sets: (a ) ,  f l  < 0, a, = -4.5; ( b ) ,  
ft > 0, a, = -6. 

9a I n 

Figure 4. Frequency Mu2 of the eigenmodes for the perturbation of the period-3 solution 
‘t4.l’ as a function of the wavenumber q for g/fl = 3, F J f ,  = -0.45 (a, = -3.67). 

Finally, we indicate how the possible phase transitions could be studied in a simple 
mean-field approximation. The method has already been discussed by Janssen and 
Tjon (198 l a ,  b) for a one-dimensional lattice with non-local anharmonic couplings. 
Within this approximation it can be shown that effective interaction parameters lead 
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to different ground states at various temperatures. Instead of discussing the double- 
quadratic potential we use here the d4 model, where most of the commensurable 
states can also be found. It turns out that the harmonic coupling gz has to be replaced 
by 

g2+[ ( (Wm")2 ) - (Wmn)z l  =im. (10) 

The thermal fluctuations of the electron-ion displacement increase with increasing 
temperature, so that the effective coupling i 2  is also increasing. Correspondingly we 
have a change in the parameter ratio a, (see equation (7)). In the interesting case of 
negative force constants, the absolute value of a, will increase with increasing tem- 
perature. For example, starting with a value for a, less than 1, the period-6 solution 
is the ground state. With increasing temperature solutions of period 4, 3 or 2 become 
the ground states. Summarising, as the value of a ,  changes, different periodic structures 
become the energetically favourable configurations of the lattice. 
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